Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Supermassive black hole binaries (SMBHBs) are natural by-products of galaxy mergers and are expected to be powerful multimessenger sources. They can be powered by the accretion of matter and then radiate across the electromagnetic spectrum, much like normal active galactic nuclei (AGNs). Current electromagnetic observatories have a good chance of detecting and identifying these systems in the near future. However, precise observational indicators are needed to distinguish individual AGNs from SMBHBs. In this paper, we propose a novel electromagnetic signature from SMBHBs: non-thermal emission produced by the interaction between the jets ejected by the black holes. We study close SMBHBs, which accrete matter from a circumbinary disc and the mini-discs formed around each hole. Each black hole ejects a magnetically dominated jet in the direction of its spin through the Blandford–Znajek mechanism. We argue that in such a situation, the interaction between the jets can trigger strong magnetic reconnection events, where particles are accelerated and emit non-thermal radiation. Depending on whether the jets are aligned or misaligned, this radiation can have different periodicities. We model the evolution of the particles accelerated during the dual jet interaction and calculate their radiative output, obtaining spectra and providing estimates for the variability time-scales. We finally discuss how this emission compares with that of normal AGNs.more » « less
-
Supermassive black holes (SMBHs) are thought to be located at the centers of most galactic nuclei. When galaxies merge they form supermassive black hole binary (SMBHB) systems and these central SMBHs will also merge at later times, producing gravitational waves (GWs). Because galaxy mergers are likely gas-rich environments, SMBHBs are also potential sources of electromagnetic (EM) radiation. The EM signatures depend on gas dynamics, orbital dynamics, and radiation processes. The gas dynamics are governed by general relativistic magnetohydrodynamics (MHD) in a time-dependent spacetime. Numerically solving the MHD equations for a time-dependent binary spacetime is computationally expensive. Therefore, it is challenging to conduct a full exploration of the parameter space of these systems and the resulting EM signatures. We have developed an analytical accretion disk model for the mini-disks of an SMBHB system and produced images and light curves using a general relativistic ray-tracing code and a superimposed harmonic binary black hole metric. This analytical model greatly reduces the time and computational resources needed to explore these systems, while incorporating some key information from simulations. We present a parameter space exploration of the SMBHB system in which we have studied the dependence of the EM signatures on the spins of the black holes (BHs), the mass ratio, the accretion rate, the viewing angle, and the initial binary separation. Additionally, we study how the commonly used fast-light approximation affects the EM signatures and evaluate its validity in GRMHD simulations.more » « less
-
ABSTRACT We report here on the first results of a systematic monitoring of southern glitching pulsars at the Argentine Institute of Radioastronomy that started in the year 2019. We detected a major glitch in the Vela pulsar (PSR J0835 − 4510) and two small glitches in PSR J1048 − 5832. For each glitch, we present the measurement of glitch parameters by fitting timing residuals. We then make an individual pulse study of Vela in observations before and after the glitch. We selected 6 days of observations around the major glitch on 2021 July 22 and study their statistical properties with machine learning techniques. We use variational autoencoder (VAE) reconstruction of the pulses to separate them clearly from the noise. We perform a study with self-organizing map (SOM) clustering techniques to search for unusual behaviour of the clusters during the days around the glitch not finding notable qualitative changes. We have also detected and confirmed recent glitches in PSR J0742 − 2822 and PSR J1740 − 3015.more » « less
-
Abstract We present fully relativistic predictions for the electromagnetic emission produced by accretion disks surrounding spinning and nonspinning supermassive binary black holes on the verge of merging. We use the code Bothros to post-process data from 3D general relativistic magnetohydrodynamic simulations via ray-tracing calculations. These simulations model the dynamics of a circumbinary disk and the mini-disks that form around two equal-mass black holes orbiting each other at an initial separation of 20 gravitational radii, and evolve the system for more than 10 orbits in the inspiral regime. We model the emission as the sum of thermal blackbody radiation emitted by an optically thick accretion disk and a power-law spectrum extending to hard X-rays emitted by a hot optically thin corona. We generate time-dependent spectra, images, and light curves at various frequencies to investigate intrinsic periodic signals in the emission, as well as the effects of the black hole spin. We find that prograde black hole spin makes mini-disks brighter since the smaller innermost stable circular orbit angular momentum demands more dissipation before matter plunges to the horizon. However, compared to mini-disks in larger separation binaries with spinning black holes, our mini-disks are less luminous: unlike those systems, their mass accretion rate is lower than in the circumbinary disk, and they radiate with lower efficiency because their inflow times are shorter. Compared to a single black hole system matched in mass and accretion rate, these binaries have spectra noticeably weaker and softer in the UV. Finally, we discuss the implications of our findings for the potential observability of these systems.more » « less
An official website of the United States government
